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Abstract. The drag force on ions moving in a magnetized electron plasma is calculated in dielectric linear
response. Various representations of the dielectric function ε(k, ω) are investigated for their suitability to
display the limits for an infinite and a vanishing magnetic field. While the influence of the magnetic field is
negligible in certain regions of k-space, it introduces in other regions a strong oscillatory structure in the
dielectric function. This requires a careful treatment of the multidimensional integrations necessary for the
drag force. The contributions from oscillatory integrands are treated by the saddle point method. Explicit
results are obtained for the dependence of the drag force on the magnetic field, the direction of motion of
the ion relative to the magnetic field, the shielding in the electron plasma, its density and the anisotropy
of the electron temperature. The importance of the collective response of the electrons is investigated for
limiting cases of the magnetic field. The validity of the linearization of the dielectric theory is checked by
comparison with results obtained by numerical simulation of the nonlinear Vlasov-Poisson equation. For
strong magnetic fields and low ion velocities, the simulations rather agree with the complementary binary
collision model than with linear response.

PACS. 34.50.Bw Energy loss and stopping power – 41.20.-q Applied classical electromagnetism – 52.20.-j
Elementary processes in plasmas – 52.40.Mj Particle beam interactions in plasmas

1 Introduction

The energy loss of charged particles in matter has been
studied intensively since ninety years starting from the
fundamental papers by Bohr [1], Bethe [2] and Bloch [3].
There are basically two complementary approaches: In the
dielectric theory (DT), see, for example [4,5], the projec-
tile is decelerated by the polarization cloud it creates in
its wake. This is a continuum treatment in which the re-
sponse of the target to the projectile as external pertur-
bation is calculated. The collectivity of this response can
be taken into account. Cut-offs are required to exclude
hard collisions between close particles. In the binary col-
lision approximation (BC), on the other hand, the energy
loss of the projectile is the aggregate of subsequent, iso-
lated pairwise interactions with the target particles, see
e.g. [6]. This requires cut-offs at large distances to ac-
count for shielding. Except for nuclear stopping at the
lowest particle velocities important features of the stop-
ping process can already be studied by considering the
drag which an electron plasma exerts on an ion. More-
over, this is realistic for important applications: The phase
space quality of ion beams in storage rings can be im-
proved by electron cooling [7–10]. In traps heavy ions are
cooled by electrons for precision tests of QED [11] and
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antiprotons are cooled by electrons and positrons to pro-
duce cold antihydrogen [12,13] with the ultimate aim of
CPT tests. However, in these applications the particles
move in strong magnetic fields, which imposes formidable
problems in both the binary collision model and in the lin-
earized dielectric theory. In BC the problem of two charged
particles cannot be solved in a closed form any more, as
the magnetic field prevents a separation of the relative
motion and the motion of the center mass. In the linear
response (LR) approximation to the DT there exist closed
expressions for the dielectric function ε(k, ω) [14,15], but
the magnetic field introduces a strongly oscillatory struc-
ture in the k-integral required for the drag force. A prac-
ticable expression in form of a one-dimensional integral
has been derived for the limiting case of an infinite mag-
netic field [15]. It is the aim of this paper to calculate the
drag force without limiting assumptions on the strength
of the magnetic field and the direction of the ion’s motion
relative to the magnetic field. For that purpose we intro-
duce a simplification in the integrand for the drag which in
physical terms amounts to a replacement of the dynamic
collective response of the electrons by a static response,
e.g. a shielding of the electron-ion interaction.

The paper is organized as follows: in Section 2 we
briefly derive the LR for the drag force and discuss two
equivalent representations for the dielectric function in an
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integral form suitable to discuss the transition to weak
magnetic fields B → 0 [15] and in terms of Bessel func-
tions [14] which is more suitable for a numerical evalua-
tion. In Section 3 we present results for the dependence of
the drag force on the strength of the magnetic field B, the
direction of motion of the ion relative to B, the shielding
in the electron plasma, its density and the anisotropy of its
temperature distribution. The simplified linearized dielec-
tric theory is compared in Section 4 with other treatments.
In certain limiting cases the dynamic collectivity in the
response of the electrons has been included [8,9,15], this
allows to estimate the error introduced by the static ap-
proximation. Much more important is the failure of the lin-
earization of the dielectric theory which is demonstrated
by comparing with results from a numerical solution of the
underlying nonlinear Vlasov-Poisson equation. For large
magnetic fields and low ion velocities these agree rather
with the complementary BC model. These discrepancies
can be traced to the different cut-off procedures employed
in the DT and the BC, respectively.

2 The dielectric linear response theory
(LR, DT)

2.1 The dielectric function

In the dielectric theory (DT) one calculates the polariza-
tion of the medium, here the magnetized electrons, due to
an external perturbation, here the ion. For the derivation
of the dielectric function we follow first the treatment of
Ichimaru [14], and put then special emphasis on the ori-
gin of problems in the evaluation of the drag force. The
electron distribution function f(r,v, t) is the solution of
the Vlasov equation

df(r,v, t)
dt

=
∂f

∂t
+ v · ∂f

∂r
+

F
m

· ∂f

∂v
= 0 (2.1)

where
F(r,v, t) = −e(E(r, t) + v × B) (2.2)

is the force on the electrons with charge −e, mass m and
velocity v. In the present application the magnetic field is
homogeneous and the coordinate system will be oriented
according to B = Bez. The electric field is E = −∇Φ =
−∇Φi −∇Φpol with the potential

Φi =
Ze

4πε0|r − vit| (2.3)

due to the perturbing ion with charge Ze and velocity
vi and the polarization potential which is related to the
electron density n(r, t) =

∫
d3vf(r,v, t) by the Poisson

equation

∆Φpol =
enpol(r, t)

ε0
=

e

ε0
(n(r, t) − n0)

=
e

ε0

(∫
d3vf(r,v, t) − n0

)

. (2.4)

Here ε0 is the permittivity of the vacuum and n0 is the
homogeneous bulk density of the electrons. As the Vlasov-
Poisson system (2.1), (2.4) is nonlinear in the electron
distribution an exact, self-consistent solution can only be
obtained numerically, see below.

After Fourier transformation the total potential Φ, the
polarization potential Φpol and the potential Φi due to the
ion are related in linear response by

ε(k, ω)Φ̃(k, ω) = Φ̃i(k, ω)

and

Φ̃i(k, ω) = Φ̃(k, ω) − Φ̃pol(k, ω) = Φ̃(k, ω) − eñpol(k, ω)
ε0k2

= Φ̃(k, ω) − e

ε0k2

∫
d3vf̃1(k,v, ω) (2.5)

where the dielectric function ε(k, ω) is defined by the first
equation and (2.4) has been used in the third equation.

The first order perturbation f̃1 is obtained by inte-
gration along the unperturbed trajectories, see e.g. ref-
erence [14] for details. It is proportional to E(k, ω) =
−ikΦ̃(k, ω). Inserting f̃1 into definition (2.5) results in

ε(k, ω) = 1−i
ω2

p

n0k2

∫
d3v

(

k · ∂f0(v)
∂v

)

H(k,v, ω) (2.6)

with the equilibrium distribution f0 and the plasma fre-
quency ωp = (e2n0/mε0)

1
2 . Here the function

H(k,v, ω) =

∞∫

0

dτ exp
[−i(k · R(τ)v − (ω + i0+)τ)

]

(2.7)
with

R(τ) =
1
ωc






sin ωcτ cosωcτ − 1 0

1 − cosωcτ sin ωcτ 0

0 0 ωcτ






and the cyclotron frequency ωc = eB/m accounts for the
unperturbed helical motion of the electrons with r(t′) =
r(t) + R(t′ − t) · v(t). The τ -integration is facilitated by
using the axial symmetry about the z-axis. We choose
k = k⊥ex + k‖ez and v = v⊥(cosϕex + sin ϕey) + v‖ez so
that

H(k,v, ω) =

∞∫

0

dτ exp
[

− i

{
k⊥v⊥
ωc

(sin(ωcτ + ϕ) − sin ϕ)

+ k‖v‖τ − (ω + i0+)τ
}]

. (2.8)
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2.2 Representation as sum over Bessel functions

For the τ -integration a representation of the exponential
by an infinite sum of Bessel functions is inserted

H(k,v, ω) =
∞∑

l,n=−∞
Jl(κ′)Jn(κ′)e−i(l−n)ϕ

×
∞∫

0

dτ exp
[−i(k‖v‖ + lωc) − (ω + i0+)τ

]

= i

∞∑

l,n=−∞

Jl(κ′)Jn(κ′)e−i(l−n)ϕ

ω − k‖v‖ − lωc + i0+
. (2.9)

This yields

ε(k, ω) = 1 +
ω2

p

n0k2

∞∑

l,n=−∞
Jl(κ′)Jn(κ′)

×
∫

d3v

(

k · ∂f0

∂v

)
e−i(l−n)ϕ

ω − k‖v‖ − lωc + i0+
, (2.10)

where κ′ = k⊥v⊥/ωc. In view of later application to elec-
tron cooling in storage rings we insert an anisotropic ve-
locity distribution

f0(v) = f0(v‖, v⊥) = n0

(
m

2πkB

)3/2 1

T⊥T
1
2
‖

× exp
(

− v2
⊥

2v2
th⊥

)

exp

(

−
v2
‖

2v2
th‖

)

. (2.11)

Here kB is the Boltzmann constant and the thermal ve-
locities vth⊥,‖ are related to the temperatures T⊥,‖ trans-
verse and parallel to the magnetic field (z-direction) by
vth⊥,‖ = (kBT⊥,‖/m)

1
2 , respectively. The velocity integra-

tions can be done in cylindrical coordinates. The result
can be expressed in terms of modified Bessel functions
Il [16] and the plasma dispersion function W [14]

ε(k, ω) = 1 +
e−κ

λ2
D‖k

2

∞∑

l=∞
Il(κ)

×
[

W (zl)
(

1 + η
lωc

ω − lωc

)

− η
lωc

ω − lωc

]

(2.12)

with

zl =
1

|k‖|
ω − lωc

vth‖
, κ =

(
k⊥vth⊥

ωc

)2

, (2.13)

the temperature ratio η = T‖/T⊥ and the parallel Debye
shielding length λD‖ = vth‖/ωp.

We consider first the limit of a strong magnetic field
B → ∞ and expand (2.12) up to the first nonvanishing or-
der in ω−1

c . While the arguments κ of the Bessel functions
become small and Il(κ) ∼ κl, the arguments in the plasma

dispersion function become large for l �= 0, W (zl) ∼ z−2
l .

Thus both the Bessel and the plasma dispersion function
favor the dominance of the l = 0 term in (2.12) for a
strong magnetic field. Inserting the appropriate asymp-
totic expansions yields

ε(k, ω)B→∞ ∼ 1 +
1

λ2
D‖k

2
(W (z0)(1 − κ) + ηκ + O(κ2)).

(2.14)
The κ-independent leading term can be obtained in a sim-
pler one-dimensional model in which the magnetized elec-
trons move like beads on strings [17,18].

The limit ωc → 0 of small magnetic fields requires a
more detailed discussion. Now W (zl) will in general not
be small for |l| � 1. For the Bessel functions Ichimaru
introduced an asymptotic formula valid for l � 1, κ �
1 and κ � l [14]. Then the summation with respect to
l is replaced by an integration. This can be done with
some effort and there results the desired dielectric function
without magnetic field [19]. These complications can be
avoided by performing an expansion in terms of ωc � 1
before representing the function H in equation (2.8) by
Bessel functions.

2.3 Integral representation

For the purpose of performing the limit B → 0 analyti-
cally, it turns out to be even more advantageous to use
an integral representation for the dielectric function [15]
which is equivalent to equation (2.12)

ε(k, ω) = 1 +
1

k2λ2
D‖



1 + is
√

2

∞∫

0

dt exp(ist
√

2 − X(t))

×
{

1 +
kvth‖
isωc

sin2 ϑ

(

1 − 1
η

)

sin

(
ωct

√
2

kvth‖

)}]

(2.15)

with s = ω/(kvth‖), ϑ = �(k,B) and

X(t) = t2 cos2 ϑ +
k2v2

th⊥
ω2

c

sin2 ϑ

[

1 − cos

(
ωct

√
2

kvth‖

)]

.

(2.16)
In the limit of small magnetic fields one expands here the
trigonometric functions up to second order and does the
t-integration. There results

lim
B→0

ε(k, ω) = 1 +
1

λ2
D‖k

2
η

W

(
ω

kηvth‖

)

(2.17)

with k2
η = η−1k2

⊥ + k2
‖. In the subsequent numerical work

the representation (2.12) will also be used for weak mag-
netic fields.

2.4 Drag force

Due to their polarization the electrons exert a drag on an
ion with charge Ze moving with velocity vi

F = −Ze (∇Φpol)r=vit
(2.18)
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and the energy loss of the ion is dE/ds = v̂i · F. The
polarization potential is obtained from equation (2.5)

Φpol(r, t) =

Ze

(2π)3ε0

∫
d3k

(
1

ε(k,k · vi)
− 1
)

eik(r−vit)

k2
. (2.19)

With the help of the relation ε∗(k,k ·vi) = ε(−k,−k ·vi)
and ω = k · vi the drag force can be written as

F =
1

(2π)3

∫
d3kk

ε0k
2

e2
|Ṽ (k)|2Im

(
1

ε(k, ω)

)

=
−1

(2π)3

∫
d3kk

ε0k
2

e2
|Ṽ (k)|2 Imε(k, ω)

|ε(k, ω)|2 (2.20)

where Ṽ (k) = −Ze2/(ε0k
2) is the ion-electron potential

energy. The complicated structure of the dielectric func-
tion (2.12) prevents any closed evaluation of the k-integral
unless one assumes a completely flattened electron distri-
bution function [8] or an infinite magnetic field [15]. For
general cases we propose an approximation in which the
effective, dynamic ion-electron interaction is replaced by
a statically screened interaction according to

Ṽ (k)/|ε(k, ω)| −→ Ṽ (k)/|ε(k, 0)|

= Ũ(k) ≈ − Ze2

ε0(k2 + β2)
. (2.21)

In this approximation the electron-electron interaction is
neglected except for a collective static shielding of the ion,
which is described by a parameter β

U(r) = − Ze2

4πε0r
exp(−βr). (2.22)

As usual in the linearization of the DT the k-integral in
equation (2.20) must be cut off at large wave numbers in
order to exclude hard collisions. Here we use cylindrical
coordinates k = (k⊥ cosϕ, k⊥ sinϕ, k‖) and cut the inte-
grations with respect to k⊥ and k‖ at km⊥ and km‖, re-
spectively. Insertion of equation (2.21) into equation (2.20)
yields then

F = − Z2e2

(2π)5/2ε0

2
λD‖vth‖

km⊥∫

0

dk⊥k⊥

km‖∫

0

dk‖

π∫

0

dϕ

×(k⊥ cosϕ, 0, k‖)
e−κ

|k‖|(k2 + β2)2

×
∞∑

l=−∞
Il(κ) exp

(

− (ω − lωc)2

2v2
th‖k

2
‖

)

(ω − lωc(1 − η)).

(2.23)

It is assumed that the ion moves in the x−z-plane so that
ω = k ·vi = k⊥vi⊥ cosϕ+k‖vi‖. In view of the dominance
of the l = 0 term in the limit B → ∞ we exhibit its
contribution separately

F = F0 + Fl

with

F0 = −A

km⊥∫

0

dk⊥k⊥

km‖∫

0

dk‖

π∫

0

dϕ (k⊥ cosϕ, 0, k‖)

× e−κI0(κ)ω
k‖(k2 + β2)2

exp

(

− ω2

2v2
th‖k

2
‖

)

(2.24)

and

A =
Z2e2

(2π)5/2ε0

2
λ2

D‖vth‖
.

Expanding for large magnetic fields up to order O(ω−2
c )

yields

F ∝ F0 = −A

km⊥∫

0

dk⊥k⊥

km‖∫

0

dk‖

π∫

0

dϕ(k⊥ cosϕ, 0, k‖)

× ω(1 − κ)
k‖(k2 + β2)2

exp

(

− ω2

2v2
th‖k

2
‖

)

. (2.25)

Of particular interest is here the longitudinal drag for
vi = viêz, in which the k-integral can be done in closed
form [19]

F0‖ = F0 · êz =
A

4
πvi exp

(

− v2
i

2v2
th‖

)

×
{

ln

[
(k2

m⊥ + β2)(k2
m‖ + β2)

β2(k2
m‖ + k2

m⊥ + β2)

](

1 + β2 v2
th⊥
ω2

c

)

−k2
m‖

v2
th⊥
ω2

c

ln

[

1 +
k2

m⊥
k2

m‖ + β2

]}

(2.26)

which does not vanish. This is in contradiction to the bi-
nary collision (BC) model [20], where the electrons move
for B → ∞ like beads on a wire and no energy can be
transferred between them and a positively charged longi-
tudinally moving ion for reason of symmetry.

We turn now to the limit of small ion velocities vi �
vth‖. Without magnetic field the energy loss depends lin-
early on vi [21,22]. In the presence of a magnetic field there
occurs an anomaly [15] as soon as α = �(vi,B) �= 0: in-
serting ω = k · vi = vi(k⊥ cosϕ sin α + k‖ cosα) into F0

the energy loss has a contribution

(
dE

ds

)

0

= F0 · v̂i = −Avi

km⊥∫

0

dk⊥k⊥

π∫

0

dϕ

km‖∫

0

dk‖

× (k⊥ cosϕ sinα + k‖ cosα)2

k‖(k2 + β2)2

× e−κI0(κ) exp

(

− ω2

2v2
th‖k

2
‖

)

(2.27)
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which turns out to be logarithmic. This anomalous be-
haviour results from integrals in (2.27) with the structure

Λ sinα

km‖∫

0

dk‖k
−1
‖ exp(−Λ2/k2

‖) =

1
2
Λ sinα

(

−γ − ln
Λ2

k2
m‖

)

. (2.28)

Here γ is Euler’s constant and

Λ =
vi sin α

vth‖
=

vi⊥
vth‖

. (2.29)

A detailed discussion shows that the l = 0 contribution to
the energy loss for small ion velocities is [19]

(
dEi

ds

)

0

∝ vi⊥
vth‖

{(

ln
vth‖
vi⊥

+ γ̃

)

I1 − I2 + I3
cos2 α

sinα

}

.

(2.30)

where γ̃ = (3 ln 2−γ−1)/2 and I1–I3 are certain integrals
with respect to k⊥ which still depend logarithmically on
the upper boundaries km⊥ and km‖.

3 Results

The drag force is calculated numerically from the inte-
grals (2.23). This requires a physically motivated choice
of the cutoff parameters km and the shielding parame-
ter β. Furthermore it is useful to introduce a scaling to
dimensionless quantities. The magnetic field introduces a
complicated structure into the dielectric function (2.12)
which poses a challenge for the integrations in (2.23).

3.1 Cutoff and shielding parameters

Without magnetic field the linearized DT yields Debye-
Hückel shielding for an isotropic, weakly coupled plasma,
β = λ−1

D . In the general case the shape of the shielding
cloud depends on the temperature anisotropy, the strength
of the magnetic field and the direction of the ion velocity
in an involved manner. For weak magnetic fields ωc � ωp

and small velocities the shielding length is λ ≥ λD‖ in
the longitudinal and λ ≤ λD⊥ in the transverse direction.
Here we will use an effective isotropic shielding with β =
λ

−1

D , where λD is calculated with the mean temperature
T = 1

3T‖ + 2
3T⊥. An analogous procedure is adapted for

the cutoff km [22] by which hard collisions are excluded

km⊥ = km‖ = km =
2 + (vi/vth)2√
3|Z|Γ 3/2

λD

. (3.1)

Here vth = (kBT/m)
1
2 and

Γ =
e2

4πε0akBT
(3.2)

is the (mean) plasma parameter with the mean distance
a = (3/(4πn0))

1
3 between the electrons.

We will discuss the influence of this choice of β and
km on the drag force in Section 3.6 below.

3.2 Scaling

Dimensionless quantities will be introduced by scaling
with the longitudinal temperature T‖, i.e.

[r] = r/λD‖ (3.3)

for lengths
[v] = v/vth‖ (3.4)

for velocities and for the drag

[F ] =
Γ‖a

3kBT‖
F (3.5)

with the longitudinal plasma parameter Γ‖ = Γ T/T‖.
The frequencies are measured in units of the plasma fre-
quency

[ω] = ω/ωp. (3.6)

Dropping the square indicating scaled quantities the drag
force (2.23) becomes

F = −
2Z2Γ 3

‖
π2

km⊥∫

0

dk⊥k⊥

km‖∫

0

dk‖

π∫

0

dϕ

× (k⊥ cosϕ, 0, k‖)
k2

(k2 + β2)2
Im(ε(k, ω)). (3.7)

Here

Im ε(k, ω) =
√

π

2
e−κ

k2|k‖|
∞∑

l=−∞
Il(κ) exp

(

− (ω − lωc)2

2k2
‖

)

× (ω − lωc(1 − η)) (3.8)

is the imaginary part of the dielectric function. Because
of equations (2.13) and (3.4) the argument of the Bessel
function is now

κ =
1
η
(k⊥/ωc)2. (3.9)

The limits of (3.8) for weak and strong magnetic fields are

lim
B→0

Im ε(k, ω) =
√

π

2
ω

k3
η

exp
(

− ω2

2k2
η

)

(3.10)

and

lim
B→∞

Im ε(k, ω) =
√

π

2
ω

k2|k‖| (1 − κ) exp

(

− ω2

2k2
‖

)

.

(3.11)
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Fig. 1. The imaginary part of the dielectric function with (solid curves) and without magnetic field (dotted curves) as function
of k‖. The other variables and parameters are chosen according to Table 1. Some prominent structures are labelled by the
dominantly contributing values of l in the summation (3.8).

3.3 Structure of the dielectric function and saddle
point approximation

Inspection shows that the integrand in (3.7) has only in-
tegrable singularities [19], but the structure of the di-
electric function (3.8) renders the numerical integration
complicated. The problems arise from the maxima of the
Gaussian under the l-summation in equation (3.8). If the
slope of (ω − lωc)/k‖ is large about its zeroes, the max-
ima can be very sharp. Moreover such sharp maxima of
the integrand in equation (3.7) can lie very close. On the
other hand the influence of the magnetic field becomes
negligible for large values of k‖, so that equation (3.8)
for the dielectric function at arbitrary strengths of the
magnetic field can be replaced by the much simpler ex-
pression (3.10) for a vanishing field. Typical examples of
the dependence of Imε(k, ω) on k‖ are shown in Figure 1

Table 1. Scaled parameters and variables for Figure 1.

panel k⊥ vi⊥ cos ϕ vi‖ ωc η

a 10.0 0.0 1.0 5.546 0.01

b 10.0 10.0 1.0 5.546 0.01

c 10.0 1.0 0.0 5.546 0.01

d 10.0 1.0 10.0 5.546 0.01

e 10.0 1.0 100.0 5.546 0.01

f 105 1.0 10.0 55.46 0.01

for the fixed values of k⊥, vi⊥ cosϕ, vi‖, ωc and η given
in Table 1. The sharp maxima in the solid curves for fi-
nite B are labelled by the dominantly contributing val-
ues of l. For large values of k‖ � 1 any peaks disap-
pear and the results for finite values of B merge with
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Fig. 2. 3-d plots of k2Imε(k, ω) (top panel for a finite mag-
netic field, bottom panel for a vanishing magnetic field). Other
parameters according to Table 2.

Fig. 3. The same as in Figure 2.

the smooth, dotted curves obtained from equation (3.10)
for B = 0. As the dielectric function diverges for ω > 0
and k → 0 we consider ε̃(k, ω)B,0 = k2ε(k, ω)B,0. Here
the subscripts B and 0 indicate the presence or absence
of a magnetic field, respectively. In Figures 2–4 we show
plots of Imε̃(k, ω)B,0 as function of ω and k for various
θ = �(k, êz) and temperature anisotropies η and ωc = 0.5.
For θ = 80◦, i.e. k‖ < k⊥ one expects ridges in Imε̃(k, ω)B

which run parallel to the k-axis near ω = lωc. These are
clearly visible in Figures 2 and 3. But the structure is

Table 2. Scaled parameters and variables for Figures 2–5.

Figure θ ωc η

2 80◦ 0.5 0.01
3 80◦ 0.5 1.0

4 10◦ 0.5 0.01
5 80◦ 0.05 0.01

Fig. 4. The same as in Figure 2.
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Fig. 5. Upper panel: 3-d plot of k2Reε(k, ω). Lower panel:
Contour plot of the zeroes of k2Reε(k, ω) (dotted curves) and
k2Imε(k, ω) (solid curves). Areas in the (k, ω)-plane which
include zeroes of both the real- and the imaginary-parts of
k2ε(k, ω) are shaded. Parameters according to Table 2.
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Fig. 6. Energy loss dE/ds = v̂i ·F with F given by (3.7). Plotted is dE/ds/(Z2Γ 3
‖ ) in units of 3kBT‖/(Γ‖a) as function of vi in

units of vth‖ for various angles α (see panel top left) and values of the magnetic field relative to B0 = 50 mT. Other parameters
according to set 1 of Table 3.

also influenced by the factor ω − lωc(1 − η), which yields
for the anisotropic case in Figure 2 negative values of
Imε̃(k, ω)B in the valleys between the ridges. Without
magnetic field Imε̃(k, ω)0 shows a single ridge traversing
the ω − k plane. For θ = 10◦, i.e. k‖ > k⊥ the magnetic
field has not such a pronounced influence on Imε̃(k, ω), as
seen in Figure 4. The real part of the dielectric function
is shown in Figure 5. Again there are ridges at ω = lωc

and negative-valued valleys in-between. Of particular in-
terest are the dashed regions in the lower panel of Figure 5
where Imε̃(k, ω) = 0 = Reε̃(k, ω) so that |ε(k, ω)|2 = 0.
The analytical behaviour of the dielectric function in these
regions must be known for an evaluation of the drag force
according to equation (2.20).

Already the static approximation (2.21) imposes
numerical challenges. Most critical is the ϕ-integration for

which the denominator of (ω − lωc)/k‖ becomes small
for k‖ ≤ 1 so that peaks occur for many combinations
of the remaining integration variable k⊥ and parameters
vi‖, vi⊥, ωc and η. The ϕ-integration is therefore done first
and the peaks are treated analytically in a fifth order
Laplace method [23]. The k⊥-integration is done last to
minimize the effort in calculating the modified Bessel func-
tions. In the intermediate k‖-integration the representa-
tion (3.10) is used for k‖ � 1.

3.4 Energy loss for anisotropic velocity distributions

In Figure 6 we show the energy loss dE/ds = v̂i · F
[with F given by (2.23), (3.7)] as function of vi for various
strengths of the magnetic field B and directions α of the
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Table 3. Parameters and variables for Figures 6–13.

Set n0[10
12 m−3] T‖[K] η B[mT] Z

1 7.9 10 0.01 50 10
2 7.9 10 1.0 50 10
3 1.0 1.16 0.001 104 1
4 108 105 1.0 107 1
5 1.55 × 104 10 0.01 4 × 103 10

Fig. 7. The l = 0 contributions (2.24) to the energy loss,
otherwise the same as in Figure 6.

ion velocity. For very small ion velocities vi � 1 and B > 0
the energy loss grows with α due to the logarithmic contri-
bution (2.30). However, the growth of the energy loss with
α for vi � 3 is independent of the presence of a magnetic
field. In the intermediate region 0.3 � vi � 3 a reversed
behaviour can be observed, the energy loss decreases with
α. For small magnetic fields the maxima of the energy loss
occur at values vi which increase with α. For large mag-
netic fields the motion of the electrons transverse to the
field is increasingly quenched. The physical velocity scale
approaches the scale (3.4) adopted for these figures. The
maxima of the energy loss occur near vi ≈ 1 and they
are ordered in a manner inverse to α. We have previously
argued that the l = 0 contribution (2.24) to the drag is
dominant for a strong magnetic field. This is clearly visi-
ble by comparing the energy loss obtained just from this
term (Fig. 7) with the corresponding results in Figure 6.

As mentioned above equation (2.30) yields a logarith-
mic divergence in the slope of the energy loss (i.e. the fric-
tion coefficient R) for vi → 0, B > 0, α > 0. The double
logarithmic plot in Figure 8 shows indeed a substantial de-
viation between the numerical results for the drag accord-
ing to equations (3.7), (3.8), the small velocity limit (2.30)
on the one hand, and any linear behaviour ∝ Rvi on the

Fig. 8. Doubly logarithmic plot of the l = 0 contribution to
the energy loss for small ion velocities for B = B0 = 50 mT.
The black circles result from the numerical evaluation of equa-
tion (2.24). The solid curve is the asymptotic formula (2.30),
while the dashed straight line represents a linear law. Param-
eters according to set 1 of Table 3.

other hand. We will discuss below in Section 4 how far
this anomalous behaviour and the associated large energy
loss at small ion velocities and α > 0 indicates a failure of
the linearization of the DT for large magnetic fields.

3.5 Energy loss for isotropic velocity distributions

In the previous sections we considered anisotropic electron
plasmas with η = T‖/T⊥ � 1 as they occur in the cooling
sections of storage rings [7–10]. In cooling traps for heavy
ions or antiprotons [11–13] the electron distribution tends
to be isotropic. In Figure 9 we show the dependence of
the energy loss on the ion velocity for various values of
α and a weak magnetic field B = 5 mT and a strong
magnetic field B = 5 T as it prevails in the traps. For a
weak magnetic field the direction of the ion motion hardly
matters, the energy loss peaks near vi ≈ 1.5 for all α.
For a strong magnetic field the peaks in the energy loss
become smaller and are shifted towards smaller values of
vi with increasing α. For large ion velocities vi � 3 the
magnetic field suppresses the energy loss and the more so,
the smaller α. Comparing with Figure 6 we conclude that
the influence of a temperature anisotropy decreases with
growing magnetic field.

3.6 Dependence on the range and the cutoff
parameter of the effective interaction

The results presented so far have been obtained with
the effective ion-electron potential (2.22) whose range
was chosen as the mean Debye-Hückel shielding length
β = β0 = λ

−1

D . In order to get some feeling for the arbi-
trariness introduced by such a choice we show in Figure 10
the energy loss as function of vi for β/β0 = 10, 1, 0.1 and
0.01. Varying the range β−1 by a factor ten introduces
just a factor ≈ 2 in the energy loss.

While the trivial dependence on the ion charge Z has
been scaled away by plotting dE/ds/(Z2Γ 3

‖ )) there is an
additional logarithmic Z-dependence due to the upper
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Fig. 9. The same as in Figure 6 for an isotropic plasma ac-
cording to the parameter set 2 of Table 3. For comparison the
energy loss without magnetic field is added (circles).

Fig. 10. Dependence of the scaled energy loss on the screening

parameter β with β0 = 0.1222/λD‖ = λ
−1

D . Other parameters
like in set 1 of Table 3 and α = 30◦.

cutoff parameter km ∝ |Z|−1, see equation (3.1). In Fig-
ure 11 one sees indeed that the nontrivial dependence of
the energy loss on km, i.e. Z, is indeed quite weak.

4 Comparison with other approaches

We will now address the role of a collective dynamic re-
sponse, which was dropped in equation (2.21), the relation
to the complementary binary collision (BC) model for the
energy loss and the validity of the linearization of the DT
in the case of strong magnetic fields.

Fig. 11. Dependence of the scaled energy loss on the charge
Z of the ion. Other parameters like in set 1 of Table 3 and
α = 30◦.

Fig. 12. The energy loss in [meV/cm] as function of the ion
velocity in vth‖. Comparison of the present model with static
shielding (2.21) (solid curves) with the dynamic collective the-
ory (dotted curves) for an infinite field [15]. Parameters ac-
cording to set 3 of Table 3.

4.1 Collective dynamic response

As mentioned above the integral form (2.15) of the di-
electric function permits for strong magnetic fields a
representation of the energy loss as a one-dimensional
integral without taking the static limit ω → 0 in equa-
tion (2.21) [15]. This allows to study the importance of
the dynamic collective response which was neglected up
to now. The comparison in Figure 12 shows that the in-
fluence of dynamic collectivity is small in absolute terms,
but becomes relatively important for large ion velocities,
where the energy loss itself is small. This is confirmed
by comparing with a dynamic calculation for an isotropic
plasma [24]. In order to emphasize the large vi-behaviour
the energy loss was multiplied by v2

i in Figure 13. Again
the dynamics increase the energy loss for large ion veloc-
ities, but their contribution to the total is smaller than
the 50% obtained in the extreme anisotropic case with
T‖ = 0 [8].

4.2 Binary collision model

With the replacement (2.21) one neglects the interaction
between the electrons except for a static shielding of the
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Fig. 13. Scaled energy loss as function of the scaled ion ve-
locity. Comparison of the present model with a static shield-
ing (2.21) (solid curve for α = 0◦, dotted curve for α = 90◦)
with the dynamic collective theory (symbols) [24]. Parameters
according to set 4 of Table 3.

ion-electron interaction. There results the same underlying
physics as in BC with a suitably screened or cutoff inter-
action. Without magnetic field BC and linearized DT give
indeed very close results [25]. Yet with growing magnetic
field there develop increasing discrepancies between both
treatments. These are particular prominent in the regime
vi → 0 [20,26,27], where the linearized DT with its loga-
rithmic singularity in the friction coefficient yields a much
larger energy loss than the BC. These differences can be
traced to the different cutoff procedures employed in both
treatments. The cutoffs are required by the infinite range
of the Coulomb interaction (BC) and its singularity at the
origin (linearized DT). However, it must be noted that the
order of integrations with respect to the velocity distribu-
tion on the one hand and to the ordinary (Fourier) space
on the other hand is inverted: In the linearized DT the
velocity averaging is performed first in the calculation of
the dielectric function (2.10–2.12), the cutoff km in the
k-integration for the drag is a velocity averaged quantity.
Conversely, in BC the velocity integration is the outer one
and the lower cutoff rm excluding hard collisions in ordi-
nary space corresponding to upper cutoff (km in Fourier-
space) depends on the actual relative velocity between the
ion and the electron. In other words, the linearized DT
involves Coulomb logarithms of averages, while the BC
involves averages of Coulomb logarithms [25].

For a strong magnetic field the electrons move like
beads along the field lines and the BC yields a vanish-
ing energy for comoving ions, as scattering events with
a velocity transfer are prohibited for reasons of symme-
try. Of course this argument holds only for the case of
an attractive ion-electron potential. For a repulsive poten-
tial there occur large velocity transfers, when the particles
are reflected from each other. Thus any treatment which
yields results independent of the sign of the potential,
like the second-order BC [20] and the linearized DT runs
into difficulties. Apparently for quasi-one-dimensional mo-
tion there exists no suitable parameter of smallness so
that both the linearization of DT as well as the O(Z2)

perturbation expansion in the BC become doubtful. A
comparison with classical trajectory Monte Carlo calcu-
lations [27,28] shows that this can be healed in BC for at-
tractive potentials by introducing a modified, self-cutting
Coulomb logarithm accounting for hard collisions [20].
The suspicion that the DT should not be linearized for
strong magnetic fields and small velocities is supported
by a more exact numerical treatment.

4.3 PIC simulations for nonlinear dielectric response

The nonlinear Vlasov-Poisson equations (2.1–2.4) can
be solved numerically. The electrons are represented by
test particles in the framework of the particle-in-cell
method (PIC) [22,29,30]. The applied technique is the
same — except of the additional magnetic field — as de-
scribed in detail in [22,30]. This PIC scheme was exten-
sively tested for the energy loss by nonmagnetized elec-
trons where a comparison with analytic approaches can
be made in certain limiting cases. A comprehensive discus-
sion of this comparison and evaluation is reported in [30].
In particular, the PIC results and the linearized DT well
agree for weak coupling ZΓ 3/2 � 1 and ωc → 0, and both
agree with the BC approach in this limit. Here the (strong)
magnetic field is accounted for by employing a modified
Velocity-Verlet algorithm which is based on a new resum-
mation technique. This ensures an efficient electron/test
particle propagation, where the time step is only restricted
by the actual Coulomb field and not by the strength of the
magnetic field, see reference [31].

As discussed above, increasing deviations between the
linearized DT and the BC develop with increasing mag-
netic field. Already the PIC results for a moderate mag-
netic field with ωc ≈ ωp, which have been presented in
Figure 8 of reference [27], show that the nonlinear DT
agrees rather with the second-order BC [20] than with the
linearized DT. In Figure 14 we present such a compari-
son for a stronger magnetic field where ωc ≈ 100ωp. The
linearization of the DT yields an energy loss which is too
large by more than an order of magnitude for all direc-
tions α of the ion velocity. For comoving ions, α = 0◦,
the second-order BC energy loss nearly vanishes in accor-
dance with the symmetry arguments presented above. The
nonvanishing energy loss obtained from the nonlinear PIC
treatment is therefore dominated by collective response.

5 Conclusions

Taking all these results together we can recommend a
pragmatic approach for calculating the drag which a mag-
netized electron plasma exerts on an ion. Clearly the PIC
solution of the nonlinear Vlasov-Poisson equation is the
method of choice as it accounts for both nonlinear and dy-
namic collective response. For weak coupling, ZΓ 3/2 � 1,
the fluctuations inherent to the PIC simulations become
large, but the second-order BC may be employed for at-
tractive potentials or the CTMC for repulsive potentials.
This neglects the collective response in a small region of
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Fig. 14. Scaled energy loss as function of the scaled ion velocity. Comparison of the present linear response (LR) model (solid
curves, with maximal values given), second-order binary collision (BC2O) model (dotted curves, [20]) and PIC simulations
(symbols, [29]). Parameters according to set 5 of Table 3.

the ion phase space about α ≈ 0◦. For large ion veloci-
ties the PIC simulations become numerically prohibitive.
But there the linearized DT presented here becomes valid.
Moreover, if the magnetic field is strong it can be evalu-
ated including also the dynamic collective response.
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